关于分数的意义教案模板5篇
作为一名教学工作者,时常要开展教案准备工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?以下是小编为大家整理的分数的意义教案5篇,欢迎大家分享。
分数的意义教案 篇1教学目标:
1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。
2、在学习过程中,培养学生的思维能力和应用意识。
3、体会数学与生活的密切联系,进一步增强学好数学的信心。
教学重点:
理解单位“1”和分数的意义。
教学难点:
理解单位“1”和分数的意义。
教学准备:
教具准备:自制教学课件
学具准备:小棒、练习纸
设计意图:
《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。
作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。
教学过程:
一、谈话导入
1、通过师生之间的谈话引出分数。
2、关于分数,你已经知道了什么?
3、提出要求:
师:从刚才的表现可以看出**班的同学们都很棒。呆会儿合作时,先听清楚老师的要求再动口说一说、动手做一做,可以吗?
二、分数的产生
1、板书课题
师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。
师:你知道古人是怎样表示分数的吗?让我们一起来看一看。
三、理解分数的意义
1.理解一个整体
(1)、找出各种材料的1/4。
师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?
师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。
然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?
(2)、汇报交流
教师进行规范:
生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。
生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。
突出整体:
师:这里的1/4是如何得到的呢?
生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。
师:这是他的想法,还有不同想法吗?
生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。
师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。
进行知识迁移:
生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。
(3)小结:
提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。
不同点:材料不同。
跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。
相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。
2、理解单位“1”。
(1)深化理解一个整体
学生自主创作:
师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。
交流汇报:
师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)
师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体
学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体
(2)揭示单位“1”。
师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)
师:刚才我们通过动手画一画、分一分等方法,深入理解了四分之一的含义。下面我们一起做一个猜数游戏,准备好了吗?
师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。
师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?
师:同学们真是了不起!已经能很快地找到单位1了。
3.理解分子、分母的含义
(1)、找其他分数
师:刚才我们把4个苹果、8个三角形分别看作单位1,平均分成4份,找到了1/4。现在请你继续观察,还能发现其他的分数吗?
那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。
(2)、汇报交流
师:谁愿意和大家交流一下你所找到的分数?
生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。
(3)比较:
师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:
师:观察这些分数,你发现了什么?
生:分母都是4
师:为什么分母都是4呢?
生:因为都是平均分成了4份
师:把什么平均分成4份?——单位“1”。
师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。
师:分母其实就是表示——平均分的份数
师:同学们的观察力可不一般呐。还有什么发现吗?
生:分子各不相同,都差1
师:分母为什么会不一样呢?
生:取的份数不同
师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3
师:分子其实就是表示——取的份数
师:同学们不仅观察能力强,分析、概括能力也很出色。
4.揭示分数的意义。
(1)逐步理解分数的意义
……此处隐藏3882个字……生把握1/2的本质。]
3. 归纳。
师:刚才同学们在表示1/2的过程中,有什么相同的地方?(板书:平均分)有什么不同的地方?(分的材料不同)
师:有的是一个圆片,也就是一个物体,(板书:一个物体)也有的是一个计量单位,如1米长的绳子,(板书:一个计量单位)还有的是由几个物体组成的,如一盒水彩笔、6只熊猫、8朵花,我们称它们为一个整体。(板书:一个整体)你还知道哪些事物可以看作一个整体吗?
生:一个班级。
生:一摞本子。
……
师:一个物体、一个计量单位、一些物体组成的整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。(在“一个物体、一个计量单位、一个整体”上用彩色粉笔覆盖板书:单位“1”)
师:既然一个物体、一个计量单位、一个整体都可以看作单位“1”,那么我们刚才表示1/2的过程就可以概括成把单位“1”平均分成2份,表示这样一份的数就是1/2(板书)。1/2还可以表示什么?
……
师:只要把单位“1”平均分成2份,表示这样一份的数,都可以用1/2来表示。
[反思:对操作过程的回溯、反思、归纳、推演,使学生认识并理解了分数意义中的两个重要内涵:平均分和单位“1”。]
4. 拓展。
红
黄
蓝
(1) 出示:
师:红色部分用分数怎样表示?(1/3)黄色部分、蓝色部分呢?
生:都可以用1/3表示。
师:为什么都用1/3表示?
生:因为都是把这个长方形平均分成3份,表示这样的一份的数。
师:黄色部分和蓝色部分共占这个长方形的几分之几?(2/3)
(2) 出示:○○○●●●
师:请用分数表示3个红色的圆。
生:1/2。
生:3/6。
师:为什么同样是3个红色的圆,可以用两个不同的分数表示?你是怎样想的?
生:把6个圆平均分成2份,3个红色的圆是1份,占1/2。
生:把6个圆平均分成6份,3个红色的圆是3份,占3/6。
[反思:从1/2扩展到几分之一,从几分之一扩展到几分之几,学生对分数意义的认识变得更加丰富、厚实。用分数表示3个红色的圆,既有利于学生体会平均分的份数和表示的份数之间的关系,又为后继学习分数的基本性质作了铺垫。]
5. 概括。
师:我们通过动手操作表示了1/2,并且能根据图意说出相应的分数。知道了把单位“1”平均分成几份,表示这样一份的数就是几分之一,表示这样几份的数就是几分之几。那么,到底什么是分数呢?
生:把单位“1”平均分成几份,表示这样几份的数,叫做分数。
师:他说得完整吗?谁来补充?
生:把单位“1”平均分成几份,表示这样一份或几份的数,叫做分数。
师:打开书第74页,看书上是怎么说的。还有什么问题?
[反思:在学生对分数形成了丰富体验的基础上,教师通过问题及板书的引导,及时让学生概括分数的意义,教材的逻辑意义成功地转化为学生的心理意义。]
6. 解释。
师:(指1/100、7/8、9/10)根据分数的意义,你能说说这几个分数所表示的意义吗?(学生回答)
师:你能结合这几个分数说一说,分数的分子和分母各表示什么意思吗?
生:在一个分数中,分母表示平均分的份数,分子表示有这样的多少份。
师:把单位“1”平均分成若干份,表示这样一份的数,叫做“分数单位”。(板书:分数单位)
师:1/100的分数单位是什么?它有几个1/100?7/8、9/10呢?
指名回答后,同桌互相交流自己写的分数的意义及分数单位是什么。
[反思:在学生初步认识分数的意义之后,让学生由抽象回到具体,结合具体的分数解释意义,能深化学生对分数意义的认识。同时,在这一过程中,学生进一步感悟了分子、分母的意义。让学生同桌之间交流自己写的分数和分数单位,扩大了参与面,增加了练习量。]
三、 巩固反馈,深化理解
1. 书面练习。
完成练习十三第1~3题。
其中阴影部分不能用1/3表示。让学生猜测,可以用几分之几表示,并利用教科书第74页“练一练”第1题的图形,验证猜测是否正确。
[反思:这样处理,一方面用活教材,使分散的习题成为有机的整体,另一方面使学生体会到有时表面上没有平均分的图形也可以进一步细分,进而用分数表示,深化了对分数意义的认识,培养了思维的深刻性。]
2. 用分数解决实际问题。
(1) 请发过言的同学站起来,发过言的人数占全班人数的几分之几?
(2) 找一个未发言的同学站起来,问:你占小组人数的几分之几?占全班人数的几分之几?占全校人数的几分之几?同样是一个人,为什么表示的分数在变化?
(3) 现在发过言的人数占全班的几分之几?为什么变化了?
[反思:用分数解决实际问题的过程既是对课堂学习状况的调查,又是对课堂学习内容的升华。由于问题来自于学生的学习实际,既能有效地激发学生参与学习活动的热情,又对部分发言不够积极的学生进行了恰当的教育和引导。]
四、 课堂总结(略)
分数的意义教案 篇5学习内容:
课本第76页例2及“做一做”第2题。
学习目标:
1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重难点:
我能应用分数的基本性质解决简单的实际问题。
学习过程:
一、导入新课
二、合作探究、检查独学
1.自学教科书76页例2: 把和化成分母是12而大小不变的分数。
(1)思考:① 要把2/3化成分母是12的分数,我们就要把分母( )乘( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该( )。最后分子分母都乘了个( ),就把2/3化成了分母是12的分数( )。
② 要把10/24化成分母是12的分数,我们就要把分母( )除以( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该( )。最后分子分母都除以了个( ),就把10/24化成了分母是12的分数( )。
(2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。
2.小组代表展示、汇报
3.总结升华
4.我能行: 完成课本第76页“做一做”第2题。
文档为doc格式